The T3SS Effector EspT Defines a New Category of Invasive Enteropathogenic E. coli (EPEC) Which Form Intracellular Actin Pedestals
نویسندگان
چکیده
Enteropathogenic Escherichia coli (EPEC) strains are defined as extracellular pathogens which nucleate actin rich pedestal-like membrane extensions on intestinal enterocytes to which they intimately adhere. EPEC infection is mediated by type III secretion system effectors, which modulate host cell signaling. Recently we have shown that the WxxxE effector EspT activates Rac1 and Cdc42 leading to formation of membrane ruffles and lamellipodia. Here we report that EspT-induced membrane ruffles facilitate EPEC invasion into non-phagocytic cells in a process involving Rac1 and Wave2. Internalized EPEC resides within a vacuole and Tir is localized to the vacuolar membrane, resulting in actin polymerization and formation of intracellular pedestals. To the best of our knowledge this is the first time a pathogen has been shown to induce formation of actin comets across a vacuole membrane. Moreover, our data breaks the dogma of EPEC as an extracellular pathogen and defines a new category of invasive EPEC.
منابع مشابه
EspZ of Enteropathogenic and Enterohemorrhagic Escherichia coli Regulates Type III Secretion System Protein Translocation
UNLABELLED Translocation of effector proteins via a type III secretion system (T3SS) is a widespread infection strategy among Gram-negative bacterial pathogens. Each pathogen translocates a particular set of effectors that subvert cell signaling in a way that suits its particular infection cycle. However, as effector unbalance might lead to cytotoxicity, the pathogens must employ mechanisms tha...
متن کاملTccP2-mediated subversion of actin dynamics by EPEC 2 – a distinct evolutionary lineage of enteropathogenic Escherichia coli
Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma i...
متن کاملEspH, a new cytoskeleton-modulating effector of enterohaemorrhagic and enteropathogenic Escherichia coli.
Enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) are closely related pathogens. During infection, EPEC and EHEC use a type III secretion system (TTSS) to translocate effector proteins into the infected cells and thereby modify specific host functions. These include transient filopodium formation which is Cdc42-dependent. Filopodia formation is followed by assembly ...
متن کاملCrk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector
Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor pro...
متن کاملRole for CD2AP and other endocytosis-associated proteins in enteropathogenic Escherichia coli pedestal formation.
Enteropathogenic Escherichia coli (EPEC) strains are extracellular pathogens that generate actin-rich structures (pedestals) beneath the adherent bacteria as part of their virulence strategy. Pedestals are hallmarks of EPEC infections, and their efficient formation in vitro routinely requires phosphorylation of the EPEC effector protein Tir at tyrosine 474 (Y474). This phosphorylation results i...
متن کامل